從質數到二進位計算機——萊布尼茲的創見
1676年底,三十而立的萊布尼茲離開待了四年的巴黎,返回德國。在巴黎期間,他已構思出微積分此一全新的數學方法,卻沒有公開對外發表,回國後他仍將之暫擱一旁,反而研究起質數來了。 他先在1678年2月發表一篇論文,指出任何大於5的質數減去1或5,一定能被6整除(這也可以表述成「任何大於3的質數都可以寫成6k ± 1」的形式…
1676年底,三十而立的萊布尼茲離開待了四年的巴黎,返回德國。在巴黎期間,他已構思出微積分此一全新的數學方法,卻沒有公開對外發表,回國後他仍將之暫擱一旁,反而研究起質數來了。 他先在1678年2月發表一篇論文,指出任何大於5的質數減去1或5,一定能被6整除(這也可以表述成「任何大於3的質數都可以寫成6k ± 1」的形式…
質數是孤獨的,它的因數就只有1和它自己,不像6還有2和3,15還有3和5,但質數卻再也沒有其它因數,就像一個沒有任何朋友的小孩,只能抱著1這個布娃娃,自己玩耍。 2p-1這種形式的梅森質數當然也是如此。不過,如果把-1挪個位置,移到指數p的後面,再和自己相乘的話,奇蹟就出現了:2p-1 x (2p-1) 會是個完美的數…
上一篇〈追尋更大的質數〉提到法國神父梅森在1644年提出一系列質數,認為將它們代入Mₚ = 2ᵖ-1,所得出的答案也是質數,結果其中有些數字他搞錯了,例如1876年法國數學家盧卡斯便證明了M₆₇不是質數。 既然M₆₇是合數,那麼它的因數是什麼…
前天是一代宗師歐拉的忌日,他是史上最多產的數學家。巧的是,史上發表最多論文的則是今天忌日的艾狄胥(Paul Erdős),他發表的論文數量多達1,525篇。雖然這些並非全部都由他自己獨力完成,但相對而言,他能與511位數學家合作,也代表他所觸及的領域之廣、投入的時間之多,實在無人能及。 艾狄胥於191…