Tag 電腦

3月11日—推動現代科技產業的人

凡納爾·布許(Vannevar Bush)?相信即使是科技產業的圈內人,大多也都對於這個名字感到陌生。其實他對現代科技的發展至關重要,無論是電腦、網際網路、人機介面與多媒體應用,倘若一路回溯過往歷史,最終都會發現他的身影。

11月16日—真空管問世120週年

真空管?現在除了所謂「發燒級」音響,日常生活中幾乎看不見真空管了吧。沒錯,現今的電子產品幾乎已全面改用電晶體,不過在電晶體出現之前,收音機、電視、雷達、……等電子產品就已紛紛問世,這都是拜真空管發明之賜。 真空管開啟了電子化的時代,若要標誌一個起點,或許是1904年11月16日。這一天,英國物理學家弗萊明(John A. Fleming)正式申請真空管的發明專利。 弗萊明攝於1906年。圖片來源:Wikipedia 弗萊明於1849年11月29日出生,學業成績自小就一直名列前茅,還曾自己動手打造模型船、引擎與相機。但他念完大學後,由於家裡的經濟狀況不允許,只能階段性地半工半讀,直到31歲才取得博士學位。 弗萊明教了兩年書後,自1882年開始兼職擔任愛迪生英國分公司的顧問。1884年,他回母校創立英國第一個電機系;為了幫助學生記住電流方向、磁場方向、導體的運動方向三者之間的關係,他特別提出「左手法則」與「右手法則」,流傳至今。 弗萊明右手定則。圖片來源:Wikipedia 1898年,馬可尼委託弗萊明協助克服無線電的瓶頸。馬可尼雖然已經展示了無線電電報的可行性,卻始終無法傳到更遠的距離。弗萊明設計出結合高功率交流發電機的發射器,讓馬可尼於1901年底,成功從英國傳送無線電到美國,創下越洋無線電報的里程碑。 不過無線電信號在這麼遠的距離卻很不穩定,仍無法商業化。弗萊明在思考如何解決時,想起愛迪生曾在1883年發現的「愛迪生效應」。當時愛迪生為了查明燈泡的燈絲為什麼老是在正極端燒斷,而在燈泡中多加一片獨立的金屬片,然後在金屬片與電源正極間接上電流計。沒想到點亮燈泡後,電流計的指針竟會移動,問題是金屬片與燈絲根本沒有接觸,電流從何而來? 愛迪生那時無法理解,也未再深究;這也難怪,畢竟要到1897年,湯姆森才發現電子。如今弗萊明已經知道是熾熱的燈絲使得電子游離,「跳躍」到正極的金屬片,才產生電流。 於是他根據此一原理,提高燈泡的真空程度,用金屬片包圍住燈絲,並施予金屬片較高的正極電壓。然後將這個真空管接上接收無線的天線,無線電波所產生的感應電流只會流向同一方向,達到整流的效果,便能用高頻無線電波將電報傳送到更遠的距離。(註) 二極真空管示意圖。圖片來源:Wikipedia 弗萊明所發明的真空管是二極管。1906年,美國工程師德佛瑞斯特(Lee De Forest)在二極管的燈絲與金屬片之間多加一個網狀的柵極,接上負電壓,就可調整電流的大小,成為可放大訊號的三極管。自此,真空管便成為電子產品的基本元件,除了前述的電子產品,也讓電腦得以邁入數位化;史上第一台可程式化的通用型電腦ENIAC 便用了一萬七千多個真空管。 雖然真空管因為耗電、易壞,反應速度又慢,而逐漸被電晶體取代,不過它揭開了數位時代的序幕,也算是功成身退,值得紀念。 註:不過真空管本身的物理限制還是不適用更高頻的電波,AT&T旗下的貝爾實驗室因此才改從半導體著手,進而發明電晶體。這段歷史可參考筆者所著之《蕭克利與八叛徒》。 參考資料: John Ambrose Fleming – Wikipedia John Fleming – ETHW

從質數到二進位計算機——萊布尼茲的創見

1676年底,三十而立的萊布尼茲離開待了四年的巴黎,返回德國。在巴黎期間,他已構思出微積分此一全新的數學方法,卻沒有公開對外發表,回國後他仍將之暫擱一旁,反而研究起質數來了。 他先在1678年2月發表一篇論文,指出任何大於5的質數減去1或5,一定能被6整除(這也可以表述成「任何大於3的質數都可以寫成6k ± 1」的形式)。隨後他又試圖證明費馬小定理,這是費馬於1640年提出的猜想: 若p為質數,a是小於p的正整數,則 aᴾ⁻¹- 1一定能被p整除。 (例如 p=7, a=2,則2⁷⁻¹ – 1 = 63 是 7 的倍數。) 倘若這真的成立,便能用來判斷一個數有沒有可能是質數。當萊布尼茲從a=2開始,也就是2ⁿ– 1這種所謂的梅森數(Mersenne number)研究起時,他注意到若是用二進位表示,梅森數依序便是1、11、111、1111、……,完全不用像十進位制那樣計算,就能直接寫出來。 接著他發現二進位也很適合用於表示完美數(perfect number)。如果一個數的真因數加總起來恰好等於它本身,例如6 = 1 + 2 + 3 或 28 = 1 +2 + 4 + 7 + 14,便稱為完美數。而歐幾里得早就證明: 若2ⁿ–…

追尋更大的質數

很多人應該知道幾天前這則新聞了:一位前NVIDIA工程師發現迄今所知最大質數: 2136279841-1 它共有41,024,320 位數,如果比照之前有本印出π的前100萬位數的書,每頁1萬個數字的話,那麼這個質數可以印成41冊。 前一個最大質數是2018年發現的282589933-1,「只能」印成25冊,再前一個則是2017年發現的277232917-1,兩者相差160萬位數,這次一下子多了1,600萬位數,無疑是很大的躍進。 梅森質數 你或許有注意到這幾個質數都是2n-1的形式(而且n都是質數),難道質數都長這樣嗎?當然不是,不過目前所發現特別大的質數,很多都是如此。這最早是17世紀的法國神父梅森(Marin Mersenne)所提出,因此2p-1(p代表質數)這種形式的質數便稱為「梅森質數」。他在1644年列出下列幾個數字: 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 認為將它們代入Mp = 2p-1,得出的都會是質數(M2=3, M3=7, M5=31,……)。 當時只知道到19都是質數無誤,但31之後就是梅森自己的猜測了,結果直到1772年,大數學家歐拉才證明M31是質數,然後再過一百年,M127才被證明是質數。至於M67和M257,梅森猜錯了,它們並非質數,另一方面,他反而漏掉了61, 89, 107這幾個會得出梅森質數的數字。 當數字越來越大時,要驗證是否為質數就是這麼困難,尤其是在只能用紙筆計算的年代。法國數學家盧卡斯(Édouard Lucas)於1857年,以15歲之齡發明一種較快速的檢驗法,不需一一試除質因數,仍然花了19年的時間才證明有39位數的M127是質數。若繼續靠人工計算,可能窮極一生也找不到更大的質數,想要再有所突破,只能等待電腦出現了。 電腦驗算 二次大戰後,英美紛紛開發基於馮紐曼架構的可程式化數位電腦,英國曼徹斯特大學的「曼徹斯特一號」也是其中之一。負責開發測試程式的圖靈便在1949年中寫了一支程式,用來逐一驗算梅森質數,不過受限於曼徹斯特一號的硬體規格,在發現更大的質數之前便終止測試了。 雖然圖靈的程式未發現新的質數,卻從此開啟了用電腦尋找質數的時代。1951年,劍橋大學用EDSAC電腦發現180×(M127)2+1 也是質數。第二年,美國數學家羅賓遜(Raphael Robinson)用國家標準局的電腦,在一年內就發現五個梅森質數:M521、M607、M1279、M2203、M2281,並證明到22303-1為止,再無其它梅森質數。 隨著電腦運算能力的提升,更多質數陸續被找到,但隨著數字越來越大,質數也越來越稀少,到了1994年,也不過又多發現17個更大的質數(其中16個是梅森質數)。有鑒於此,美國電腦科學家沃特曼(George Woltman)於1996年初發起「網際網路梅森質數大搜尋」(Great Internet Mersenne Prime Search,簡稱GIMPS)計畫,讓有興趣的人下載程式到個人電腦,集群體之力一起驗算梅森質數。…

諾貝爾獎最接近數學的一次?

剛剛公布的諾貝爾物理學獎頒給普林斯頓大學的霍普菲爾德(John J. Hopfield)和多倫多大學的辛頓(Geoffrey E. Hinton),以表彰他們「基礎性的發現與發明,使得機器學習得以藉由人工神經網路獲得實現」。 這並非諾貝爾物理學獎第一次頒給與電腦有關的發現或發明。例如: 1956年的三位得獎者是因為對於「半導體的研究及發現電晶體的效應」。 1973年頒給兩位分別發現「半導體和超導體上的穿隧現象」,以及另一位提出「理論預測通過位能障壁之超電流(supercurrent)的性質,特別是被稱為『約瑟夫森效應』的現象」。 2000年的三位得獎者分別「發展出用於高速和光電子學的半導體異質結構」以及「發明積體電路」。 2007年的三位得獎者是因為「發現巨磁阻效應」。IBM因此才發明硬碟,大幅提高電腦的貯存容量。 2009年的三位得獎者則是「讓光纖用於光通訊取得突破性成就」,以及「發明成像半導體電路——CCD感光元件」。 若以對人類的貢獻而言,霍普菲爾德和辛頓這次獎倒也實至名歸,畢竟近年來人工智慧突飛猛進,在材料、生物、製藥、……等各種領域都讓科學家獲得突破性的發展。只不過之前得獎者的發現或發明都與物理原理有關,而且也是實體的,但類神經網路與機器學習似乎無關乎物理學,又是屬於軟體或演算法的範疇,真要說,跟數學還比較有關係。 然而諾貝爾獎的獎項不包括數學。這次物理學獎頒給他們兩人,應該是諾貝爾獎最接近數學的一次吧? 按:其實諾貝爾經濟學獎已經頒給好幾位數學家,例如在賽局理論提出納許均衡的納許(John Forbes Nash Jr.)。不過諾貝爾的遺囑原本並未設立經濟學獎,是1968年瑞典中央銀行為紀念諾貝爾而增設,因此正式名稱為「瑞典中央銀行紀念阿爾弗雷德·諾貝爾經濟學獎」,有些人就反對將它通稱為諾貝爾經濟學獎。 補充說明: 根據諾貝爾獎官方新聞稿,還是跟物理學有關係的^^。 原來物理學中可用原子自旋來描述某個材料的特性,霍普菲爾德便將之用於描述整體的神經網路(圖像中的畫素或是文句中的字母相當於網路中的節點,節點之間的連結代表它們彼此的關聯性)。就如自旋系統具有能量數值,他也賦予不同節點之間的連結不同數值,經由不斷反饋來尋找能量最低的路徑,便可得到最佳結果。