Tag 科學史上的今天

12月22日—能看見無限的人

1934年,已經67歲的數學大師哈代(G. H. Hardy)面對年輕數學家艾狄胥(Paul Erdős)的提問:「您自認對數學的最大貢獻是什麼?」哈代腦海中浮現的不是任何數學公式或定理,而是一張永難忘懷的面孔,於是他毫不猶豫的回答:「發現拉馬努金!」隨即再補上:「與他的合作是我人生中的一個浪漫的意外。」哈代不禁嘴角上揚,思緒已飄向從前……。 那是1913 年 1月,哈代收到一封來自印度的信,一個作記帳工作的印度青年自稱沒上過大學,但利用閒暇時間自學數學,得出了一些定理,請他過目指教。所附的數學定理洋洋灑灑寫滿九張信紙,多是各種無窮級數的等式,絢麗璀璨令人目眩。 哈代從未見過這樣的數學式,宛如在他熟悉的數學森林裡突然冒出許多新品種的花朵,令人不禁懷疑是人工拼湊的偽造品,例如: 哈代把信擱在一旁,本想置之不理,但愈想愈覺得它們不可能是假的,因為沒有人可以如此憑空想像捏造出這些式子。他約了劍橋大學的同僚李托伍德(J. E. Littlewood)一起檢視這些定理,最後兩人判定這位名不見經傳的拉馬努金根本是位具有卓越創造力的天才數學家。著名哲學家也是數學家的羅素(Bertrand Russell)當時也在劍橋,他給女友的一封信就寫道:「在餐廳裡我發現哈代與李托伍德欣喜若狂,因為他們自認發現了第二個牛頓──一個年薪20磅的印度職員。」 拉馬努金於1887年12月2日出生在當時仍是英國殖民地的印度,11歲就問倒寄宿在他們家的兩名大學生,13歲就自己發現許多三角學定理。16歲時他從圖書館借了一本數學書籍,裡面收集了五千多條數學定理和公式,但沒有詳細證明與說明,拉馬努金埋頭鑽研,第二年就開始自己衍生出新的定理。然而拉馬努金一直沒有跟任何學界接觸,不知道應該要嚴謹地證明他所發現的定理,甚至還自創一些數學符號,難怪他寄給哈代的數學式宛如奇花異草。 事實上,他的洞見宛如天啟,他曾說: 「我曾在睡夢中有過不尋常的經驗。有一片彷彿由流動的血液形成的紅色光幕。我觀察著它,突然,一隻手開始在光幕上寫字,我立刻全神貫注。那隻手寫了一些橢圓積分,它們牢牢地印在我的腦海裡。我醒來後,立刻將它們寫在紙上。」 哈代安排拉馬努金於1914年來到劍橋後,才赫然發現拉馬努金對當代數學的無知,於是他從頭教導拉馬努金如何以正統的方式表述數學,同時盡量不去阻礙他的創意。拉馬努金在1915年間發表了39篇論文,1916年拿到博士學位,1918年入選為英國皇家學會會士,同年十月成為第一位獲選為三一學院院士的印度人。 表面看起來,拉馬努金在英國的生活似乎一帆風順,但其實他早就身心俱疲。他抵達英國那年就爆發第一次世界大戰,他因宗教信仰吃素,但戰時食物配給有限,以致營養不良。他工作過勞又不適應英國寒冷的天氣,加以思鄉心切卻因戰爭無法回印度,終於在1917年病倒了。在兩年的療養過程中,拉馬努金先被以為是胃潰瘍,後來被診斷為肺結核;期間換過八位醫生、五間療養院。 有一次哈代坐計程車去療養院探望他,不經意提到:「今天搭計程車的車牌號碼是1729,這個數字沒啥意思,希望不是不祥之兆。」拉馬努金答道:「不會啊,這是個很有趣的數字,它是可以用兩種方法表達為兩立方和的數字中最小的(即 1729 = 13 + 123,另外也等於 93 + 103)。」 1919年2月,一次世界大戰結束三個月後,拉馬努金終於可以回印度,但返鄉後健康狀況仍未好轉,最後於隔年四月過世,享年33歲。哈代得知後大受打擊,因為拉馬努金去世前兩個月還以愉悅的語氣寫信給他,報告他新的研究成果。哈代深感悲傷與遺憾的表示對拉馬努金虧欠許多,與他共事的五年當中,拉馬努金一直都是他創意與靈感的泉源。 拉馬努金留下來的筆記本中仍然藏有很多尚待挖掘的寶藏。除了對於純數學本身的貢獻,他的一些定理已廣泛地被應用在各種不同領域,包括統計力學、粒子物理、密碼學、弦論等等。每個知道他的人都不由得設想:如果拉馬努金不是如此英年早逝,他那具有神秘直覺的大腦還會為人類埋下多少超越時代的種子。 參考資料:

12月17日—人類首度完成動力飛行120週年

自古以來人類即夢想能翱翔天際,中國古籍記載將人繫於風箏飛上天空、達文西繪製了數種飛行機器,但這些都是未能付諸實現的空想。即使到了十八世紀末,人們終於可以乘坐熱氣球升上高空,甚至往來兩地之間,但要像鳥兒般自由飛翔仍是遙不可及的夢想。1903年的今天(12月17日),美國的萊特兄弟終於證明這個夢想是可以實現的,也開啟了人類翱翔天空的新時代。 萊特兄弟中的兄長威爾伯(Wilbur Wright)出生於1867年,排行老三,弟弟奧維爾(Orville Wrigh)和他相差四歲;兩人都只有念到高中,但都沒拿到文憑。他們先於1989年開設印刷廠,三年後見到腳踏車開始風行,便轉而投入腳踏車的販賣與維修,到了1896年進一步包辦設計與製造,打造自己的品牌。 就在1896這一年,發生了與飛行實驗相關的三件大事。首先是五月時,史密森尼學會(Smithsonian Institution)的秘書長蘭利(Samuel Langley)設計的無人飛機模型(翼長3米7、重11公斤、配備一馬力的小蒸汽機),從船上彈射起飛後,最遠飛行了1公里,被認為是首度證明比重大於空氣的飛行器可以穩定地持續飛行。 接著是於六、七月時,法裔美國人夏努特(Octave Chanute)根據德國的滑翔機先驅李林塔爾(Otto Lilienthal)的設計,增加更多機翼以獲得升力,讓人駕著多翼的滑翔機成功從密西根湖畔的沙丘滑翔落地。 不過八月傳來一件噩耗,自1891年起就不斷親自試飛、改良滑翔機的李林塔爾,竟在試圖挑戰自己的250公尺滑翔紀錄時,不幸自15公尺高的空中墜落地面,一天半後傷重不治。據說他臨終前留下遺言:「犧牲是必須的!」,這句話便被刻在他的墓碑上。 這三起事件深深影響了萊特兄弟,尤其李林塔爾之死更是他們決定投身飛行實驗的轉捩點。他們向史密森尼學會借閱各項飛行文獻,深入了解前人的研究與實驗,最後決定在進行動力飛行實驗前,先解決控制轉向的問題;李林塔爾就是因為只能透過扭轉身體來操控滑翔機才失敗身亡。萊特兄弟雖然看出若能像鳥兒一樣改變翅膀末端的角度,就能左右轉向,但要如何扭轉單翼的平面又不至於扯裂? 有一天,哥哥威爾伯在店裡要更換腳踏車內胎,他將新的內胎從長盒中拿出來,一邊與客戶交談時,突然發現自己雙手握著長盒子的兩端,正不自覺地一手往內一手往外地反方向扭轉盒子。他驀然茅塞頓開,何不像這樣設計成互相連結的雙翼結構?! 1899年,他們先製作了一個雙翼風箏來模擬飛機的機翼,用兩根繩子分別扭撓翼尖以測試是否能控制轉向,確認效果不錯後,再打造全尺寸的滑翔機。他們詢問氣象局何處有強勁且穩定的風勢,氣象局建議的地點是北卡羅萊納州一名為小鷹(Kitty Hawk)小漁村。於是他們於1900年從家鄉俄亥俄州的德頓(Dayton)花了一個星期來到小鷹,以繩控方式進行滑翔機的飛行實驗。 不料經過多次的試飛與修改總得不到預期的升力,他們只好在1901年自己建造小型風洞,測試超過60種的模型截面,接著在1902年做了七百多次的滑翔測試後,他們決定是賦予它動力的時候了。 不過現有能產生足夠動力的發動機本身都太重了,於是他們的腳踏車技工泰勒(Charlie Taylor)用鋁銅合金打造出輕量的引擎,不用汽油幫浦,而是直接靠重力讓汽油進到化油器。經由風洞測試,他們設計出效率超過70%的螺旋槳,只比現代的設計少10%。 1903年12月17日這一天,他們的「萊特飛行者號」(Wright Flyer) 從3米高的沙丘上起飛,第一次只在空中停留了12秒,飛行37公尺,但第四次飛行了59秒,260公尺遠,成功完成人類史上首度動力飛行的里程碑。 萊特兄弟隨即成立航空公司,製造飛機,但他們事業並未如預期般順利,因為專利訴訟隨之而來,而在官司尚未落幕之前,威爾伯即於1912年因傷寒病逝。哥哥過世後,奧維爾也失去對航空的熱忱,於1915年將公司賣掉。 如今飛機的高度與距離已遠遠超乎萊特兄弟所能預料,他們更絕不會想到相隔不到66年,人類就已經能踏上月球。為了紀念他們的貢獻,阿波羅11號的登月小艇以他們的試飛地點命名為「小鷹號」,順利讓阿姆斯壯與艾德林成為首度踏上月球的人類,阿姆斯壯還特地將萊特飛行者號的碎布與木片帶上月球。 另外,NASA於2021年送上火星的小型無人直升機機智號(Ingenuity),至今已成功執行67趟飛行任務,它的太陽能板下也掛著一片萊特飛行者號的碎布,而它的試飛場域便稱為「萊特兄弟場域」(Wright Brothers Field)。 未來人類或許還會前往宇宙更深處,而一切的起點,可說是120年前的今天萊特兄弟試飛成功。 參考資料:

12月15日—思索人類未來的人

普林斯頓高等研究院,少數頂尖學者方能受邀進駐的學術殿堂。在這裡不須教書、不須產出論文,完全不受俗務干擾,只須專心思考;愛因斯坦、馮·紐曼、哥德爾、狄拉克、包立、李政道與楊振寧、……等大破大立的科學巨擘都曾在此駐足。在這柏拉圖天空的繁星之中,卻有一位連博士學位都沒有,而且不像其他學者來來去去,他一待就超過一甲子,直到2020年過世為止。 這位與眾不同的科學家就是今天恰逢百歲冥誕的戴森(Freeman Dyson)。他於1923年12月15日出生在英格蘭一個人口不到萬人的小鎮,自小嶄露數學天份,四歲時就曾試圖計算太陽有多少原子;他姊姊記得年幼的他總是被百科全書包圍著,不時埋首在紙上做計算。 戴森於1941年進入劍橋大學三一學院,但因第二次世界大戰戰情吃緊,他也加入空軍擔任分析師,直到戰爭結束後才重返校園取得大學文憑。1947年,戴森到美國康乃爾大學留學,跟著德裔物理學家貝特(Hans Bethe)做研究。戴森就是在這裡認識了大他五歲,卻已經擔任教授的費曼,兩人從此成為至交。 當時物理學家想要結合量子力學與狹義相對論,建立量子電動力學,以便正確描述光與帶電粒子間的交互作用,但是在計算過程中卻會產生無限大的數值,顯然與實際不符。為了解決這個問題,費曼在1948年發展出費曼圖來表述路徑積分,成功透過重整化抵消無限大。但是這種圖解的方式與傳統數學大相逕庭,令當代的物理學家感到愕然而難以接受;當時唯一的知音就只有戴森。 在此同時,哈佛大學教授施溫格(Julian S. Schwinger)與日本的朝永振一郎教授也各自以正統方法,發表重整化的方程式,只不過相當複雜。戴森很快看出他們的方程式和費曼圖可互相對應,兩者其實是一體的兩面,他於1949年發表論文,闡述兩者的連結,為量子電動力學的完備性補上臨門一腳。 最後費曼、施溫格與朝永振一郎三人共同獲頒1965年的諾貝爾物理學獎。施溫格與楊振寧都為戴森沒有得獎而大抱不平,但戴森自己倒是不以為意,他說:「如果你想贏得諾貝爾獎,就應該長期專注於某個深刻而重要的問題,至少十年不放。這可不是我的風格。」 是的,戴森在普林斯頓高等研究院中猶顯得風格迴異。院長歐本海默於1953年提供他終身職時,大概以為聘到一位量子力學的理論物理學家,不料三年後他就和氫彈之父泰勒一起合作,為通用動力公司設計絕對安全的核反應爐 TRIGA (因為溫度上升時,所使用的鈾氫鋯核燃料的反應速率反而會下降)。至今這種反應爐仍在世界各地的醫院、大學和研究機構使用中(我國清華大學校園內的核反應爐也是這型)。 1957年,戴森乾脆請假一年,跑去參加民間發起的獵戶座計畫,幫忙設計以核能為動力的火箭,用來探索太空。不過這計畫後來因為1963年的《部分禁止核試驗條約》國際公約而終止;戴森自己正是推動這項公約的主要人物之一,因為他見到美蘇的核武競賽越演越烈,寧可放棄核能的發展。 但戴森從未放棄探索宇宙的熱情。他除了寫過中子星、脈衝星等天文物理的論文,還拋出許多極具創意的點子,例如在彗星上種植基因改造的樹(「戴森樹」,Dyson Tree);或是將只有一公斤重、可利用星塵為材料進行自我複製的自動機(「星雞」,Astrochicken) 送進太空,便可超越人類壽命限制,恆久地探索宇宙深處;還有將整個恆星包圍起來的「戴森球」(Dyson Sphere),如此便可汲取恆星的所有熱輻射做為能源,供人類進行大規模的太空移民。 戴森曾引用哲學家柏林(Isaiah Berlin)的比喻,將偉大的科學家分成兩種:狐狸與刺蝟。戴森說:「狐狸對每件事都感興趣,總是輕易地從一個問題跳到另一個問題。刺蝟只對少數他們認為是基本的問題感興趣,而且會花上數年或數十年的時間在同一個問題上。偉大發現大多是刺蝟找到的,多數小發現則是狐狸找到的。科學需要刺蝟也需要狐狸才能健康成長,刺蝟深入挖掘事物的本質,狐狸則探索我們這神奇宇宙的複雜細節。愛因斯坦是隻刺蝟,費曼則是隻狐狸。」 戴森當然也是狐狸,而且是隻眺望未來、思索人類文明何去何從的狐狸。 按:本文改寫自收錄於《 科學史上的今天》的〈科學需要刺蝟,也需要狐狸〉

11月7日—居禮夫婦如何測量放射性強度?

今天 (11月7日) 是瑪麗·居禮(俗稱居禮夫人)的156歲冥誕,關於她的生平已經有很多文章介紹,大家應該都略知一二,我就不再贅述。倒是上個月我在德意志博物館看到一件居禮夫婦的實驗器材,可以趁這個特別的日子介紹一下。 瑪麗·居禮是在1896年開始研究放射性元素。這年三月,法國物理學家貝克勒(Henri Becquerel)偶然發現和鈾鹽放在一起的密封底片竟曝光了,因而意外發現放射性,不過這並沒有引發研究熱潮,因為大家的目光仍鎖定在侖琴 (Wilhelm Röntgen) 前一年發現的X射線上。瑪麗·居禮決定避開熱潮,選擇放射性這個尚未有人深入探討的全新領域,做為博士論文的題目。 瑪麗的新婚夫婿皮耶·居禮(Pierre Curie)曾在1880年和哥哥一起發現壓電效應,也就是某些晶體受到壓力時會產生電位差,隔年他們兄弟倆又利用壓電效應,發明可偵測微弱電位差的靜電計。瑪麗用這靜電計發現瀝青鈾礦會使周圍的空氣游離而導電,因此可藉此偵測放射性。 如果瀝青鈾礦的放射性來源是鈾,那麼精煉出來的純鈾應該有更強的放射性,沒想到恰恰相反,精煉後的放射性反而只有原來的四分之一。這代表瀝青鈾礦中還有尚未發現的元素,放射性遠大於鈾。於是居禮夫婦費盡千辛萬苦,終於在1898年先後發現兩種放射性元素:釙(polonium,為了紀念她的祖國波蘭)與鐳(radium)。 居禮夫婦繼續嘗試各種放射性的實驗,到了1902年,兩人各自發表與聯手合作的論文多達32篇。1903年,瑪麗·居禮終於獲得博士學位,同年,他們夫婦倆與貝克勒三人共同獲頒諾貝爾物理獎。 上圖就是居禮夫婦在1900年所用的實驗器材,雖然德意志博物館展示的這件是複製品,卻是瑪麗·居禮於1903年為德意志博物館親手打造的。下圖為館內所做的圖解,中文是我自己再加上去的;基本原理如下: 一、 圖的右側是壓電元件,裡面的石英晶體在砝碼的應力作用下,會產生電場(這是皮耶·居禮和哥哥在1880年發現的壓電效應),所產生的電荷蓄積到電容裡,同時使得左側的靜電計指針偏移。 二、蓄積定量的電荷後,將放射性物質放入容器內。放射性物質的幅射造成空氣游離,游離電子逐漸抵銷掉電容裡的電荷,靜電計指針隨之慢慢歸位。 三、記錄靜電計指針隨著時間的變化,直到歸零為止。 四、 放射性越強,電容的電荷越快被抵銷,靜電計指針也越快歸零,便可以此做為放射性強度的指標。 他們就是如此測出瀝青鈾礦的放射性強度是純鈾的四倍。 參考資料:

11月4日—忘了自己發明光纖的人

現今網路已如同水電一般,成為日常生活不可或缺的一部分,無論是瀏覽網頁或社群媒體;傳送郵件、分享檔案;聊天、視訊;購物、聽音樂、看影片、……等等,都是透過網路完成。如此各式各樣的網路應用在三十年前還很難想像,因為當時受限於頻寬不足,只能用來傳輸文字,一直要到骨幹網路改以光纖取代銅線後,才一舉突破瓶頸,大幅提升網路頻寬。因此可以說沒有光纖,就沒有現今如此蓬勃發達的各種網路服務,而發明光纖技術的就是被稱為「光纖之父」的華裔科學家高錕。 上海—香港—倫敦 高錕是在1933年11月4日出生於上海的書香門第,祖父是清末積極參與反清活動的文人,父親於密西根大學取得法學博士後,回上海擔任律師。由於家境尚稱富裕,自小熱愛科學的高錕得以嘗試各種化學實驗,包括自製相紙、煙火、滅火器,還曾用紅磷粉和致命的氯酸鉀混合在一起,做成甩在地上即會爆炸的泥球炸彈。 高錕上中學時,因國共內戰迫近上海,而於1948年隨家人移居香港。1952年赴英國就讀伍利奇理工學院(即現在的格林威治大學),再轉念英國倫敦大學學院,於1957年取得電子工程學士學位後,進入國際電話電報公司(ITT)設於英國的研究機構——標準電信實驗有限公司(Standard Telephones and Cables Ltd)。他一邊工作,一邊繼續在倫敦大學學院攻讀博士,最後在1965年取得電機工程博士學位。就在第二年,他發表了開啟光通訊的關鍵論文〈用於光頻的介電纖維表面波導〉(Dielectric-fibre surface waveguides for optical frequencies)。 雷射開啟光通訊,但…… 雖然海底電纜早在十九世紀中葉就已開始鋪設,但只能用於收發電報,直到1956年,第一條電話專用的越洋海底電纜才完工啟用,連接蘇格蘭與加拿大,可同時容納36通電話。隨著通訊需求快速成長,陸上與海底電纜都得不斷擴增,建設成本也跟著成正比增加。1960年,美國的梅曼(Theodore Maiman)博士發明雷射後,許多人開始設想利用雷射進行光通訊的可能性,高錕也是其中之一。 理論上,光當然和電一樣,也能以開或關的狀態來代表0與1的數位訊號,有了高同調性又功率強大的雷射,遠距離傳輸就不是問題。但問題是,要透過什麼介質傳送呢?光只能直線行進,怎樣才能讓光也可以循著彎曲的纜線抵達遠方? 物理學家早就知道光線經過兩個不同折射率的介質時,部份光線會穿過界面而產生折射,其餘則會再從界面反射回來;如果入射角大於臨界角,全部光線便會向內反射。當十九世紀末玻璃纖維問世後,科學家便想到可利用全反射原理,讓玻璃纖維做為傳導光線的光纖,於是在雷射尚未發明之前,就已經用光纖做成內視鏡,以及滿天星般的燈飾。不過實際上光在玻璃中會嚴重衰減,大約20公尺後就只剩1%;內視鏡和燈飾的光纖長度很短,光的耗損有限,所以仍能發揮作用,但距離一旦拉長,即使雷射光也難逃迅速衰減的命運,無法用來傳遞資訊。 突破盲點 儘管大家都認定光纖無法用於長距離通訊,但高錕卻不肯輕易放棄。經過幾年研究後,他發現衰減主要是因為玻璃含有雜質,以及光纖表面不夠平滑,以致光在行進中不規則散射而迅速耗損。他著手進行實驗,終於在1966年發表論文,指出可用石英基玻璃做為光纖的材料,並去除玻璃中的雜質,就能讓光的衰減幅度低於每公里20分貝,足以進行長距離通訊。 1970年,美國康寧公司(Corning Glass Works)終於成功開發出高品質的光纖,衰減幅度果真如高錕的計算,每公里小於20分貝;兩年之後又改善到每公里只衰減4分貝。1977年,通用電話暨電子公司(General Telephone & Electronics)在加州長灘將光纖實際納入電話網路,隨後歐美許多電訊公司也開始使用光纖。隨著半導體雷射的技術突飛猛進,光纖通訊的衰減幅度改善百倍以上,到了1987年,光通訊的傳輸速度已達1.7 Gbit/s,而且每50公里才需要放大器。 光纖比銅線傳輸距離更長、頻寬更大、鋪設成本更低,因此除了逐步用於陸上通訊網路,第一條橫越大西洋的海底光纜也於1988年鋪設完成。幾年後又開發出「波長分波多工」技術,可允許一條光纖同時傳輸不同波長的光,使得頻寬大幅擴增到銅線的萬倍以上,從此開啟了全球性的光纖網路時代。 進入二十一世紀,網際網路的應用快速盛行後,更加突顯出光纖對人類文明的重要性,高錕的貢獻也終於得到肯定,而於2009年獲頒諾貝爾物理獎。只是此時他已罹患阿茲海默症六年,忘了光纖為何物,更不記得自己就是發明人。諾貝爾獎頒獎典禮那天,瑞典國王打破慣例,主動走到高錕的座位前頒獎給他,讓他無須像其他得獎人那樣走到舞台中央鞠躬領獎。高錕起身接受頒獎,他站得挺直,笑容純真燦爛,想必仍未忘記這是科學家的最高榮譽……。 按:本文同步發表於2003年11月號的《工業材料》雜誌。 參考資料: