你愛國但國家不愛你——哈柏的悲劇人生

《人口論》預言饑荒無可避免 英國學者馬爾薩斯 (Thomas Malthus) 於十八世紀末發表《人口論》,認為人口以幾何級數快速成長,但糧食的產量卻只能以等差級數增加,絕對趕不上全體人類所需。若不設法抑制出生率,未來饑荒勢不可免。馬爾薩斯並非危言聳聽,尤其進入十九世紀後,工業化帶動經濟繁榮,醫療衛生也大幅改善,人口增加的速度更是遠遠超乎農產品的增幅。 農業生產最主要的瓶頸就在於氮肥嚴重不足。氮是植物生長的重要營養元素之一,但植物無法直接吸收大氣中的氮氣,在自然環境下,必須由閃電或土壤中的微生物將氮氣分解,轉化為氨 (NH3,俗稱阿摩尼亞) 後,才能被植物吸收。要提高農作物產量就必須施肥,當時只能從含氮量很高的動物糞便或硝石中獲得天然氮肥,但天然氮肥數量有限,也就莫可奈何。 那麼全世界人口從《人口論》發表時約莫 10 億,至今已達 79 億,為什麼並未發生馬爾薩斯所預言的糧食危機?這就要歸功於德國化學家哈柏 (Fritz Haber),他發明了將氮氣轉化為氨的化學方法,可以直接製造人工氮肥,從此氮肥要多少有多少,徹底解決糧食不足的問題。 哈伯法打破人類宿命 哈柏於 1868 年 12 月 9 日出生於普魯士一個猶太家庭,兩年多後,普魯士結合其它德意志邦國成立德意志帝國,具有強烈愛國情操的哈柏自小在身分認同上,認為自己是德國人的程度遠遠大於是個猶太人,還受洗改信基督教。 哈柏的母親在生他時難產而亡,不知是否因為這樣,父親與他的關係一直相當緊繃。哈柏於 1891 年取得化學博士學位後,應父親要求回家繼承家業,參與化工廠的營運,但兩人衝突不斷,父親才死了這條心。第二年哈柏就重返校園做博士後研究,兩年後在大學擔任助理,踏上學術研究之路。 1908年,哈柏發明後來以他為名的「哈柏法」(Haber process),將氮氣跟氫氣以 1:3 的比例混合,施予高溫高壓(攝氏 400 度, 200 大氣壓),用鋨當催化劑,成功製造出氨氣。只不過鋨是非常稀有的金屬,無論是數量或價格的因素,仍然無法大量生產氮肥。 不過德國化學公司 BASF 仍看好哈柏法的潛力,向哈柏買下此一製程專利。之後工程師博世 (Carl Bosch) 帶領團隊,試了兩萬多種配方,終於在 1910 年找到一種由鐵、鋁、鈣混合而成的催化劑,可以用來取代鋨。鐵、鋁、鈣這三種元素都很容易取得,含量豐富又價格低廉,哈柏法終於得以工業化,用來大規模生產人工氮肥。 火藥與毒氣 哈柏因為挽救無數人命免於饑荒的巨大貢獻,於 1918 年獲頒諾貝爾化學獎。諷刺的是,哈柏法也造成無數傷亡。這是因為現代火藥的基本成分硝酸銨也可以用氨製成,因此當 1914 年第一次世界大戰爆發,BASF 所生產的氨並未用於製造氮肥,而是拿來製造火藥,供德軍在戰場上使用。 當然,科學家的發明會被如何運用,並非科學家所能掌控,本無需為此承擔道德責任,然而哈柏卻更進一步做出令人非議的行動。 具有狂熱愛國主義的哈柏向政府主動請纓,研發氯氣、光氣、芥子毒氣等致命毒氣,還於 1915 年 4 月親自到前線指導軍隊使用。化學武器果然在短短幾天就造成數萬名敵軍傷亡,哈柏隨即因此戰功被授予上尉官階,並於 …

破解希爾伯特第十個問題——她的畢生夢想與關鍵角色

「茱莉亞·羅賓遜 (Julia Robinson) 的名字絕不能被排除於希爾伯特第十個問題之外。」最終解決了希爾伯特這個大哉問的俄國數學家馬季亞謝維奇 (Yuri Matiyasevich),於 1992 年特別發表一篇回顧的文章,開頭第一句便如此宣告羅賓遜的重要性。 什麼是希爾伯特第十個問題? 1900 年,大數學家希爾伯特 (David Hilbert) 在第二屆國際數學家大會上提出 23 道最重要的數學問題,其中第十個問題是: 是否存在一種演算法,可以判定任一個係數均為整數的多項方程式有整數解? 例如:3×2 – 2xy – y2z -7 = 0 有整數解 x=1, y=2, z=-2 但 x2 + y2 + 1 = 0 就沒有整數解。 丟番圖方程式 係數均為整數的多項方程式又叫「丟番圖方程式」,名字源自三世紀時對此有相當研究的希臘數學家亞歷山大城的丟番圖 (Diophantus of Alexandria)。很多我們熟悉的問題都是丟番圖方程式,例如:「雞兔同籠,共有18 隻腳,請問有幾種雞兔組合?」這個問題就相當於 2x + 4y = 18 有幾組正整數解。還有畢氏定理: a2 + b2 = c2 …

另一種「關鍵少數」——電晶體 MOSFET的發明

電晶體的種類有很多種,其中最重要的無疑是「金屬氧化物半導體場效電晶體」(簡稱 MOSFET),它的數量佔了所有電晶體 99.9% 以上。據統計,自 1960 年問世直到 2018 年為止,MOSFET 的生產數量多達 1.3×1022 顆。這數目有多大?這麼說吧,如果平均分給全世界 78 億人,每個人可分到 1.7 兆顆。 上一篇的〈純屬意外的發明與發現——矽晶圓氧化層〉,寫到由於 1955 年的一件實驗意外,造成矽晶圓表面產生氧化層,才促成半導體技術的突飛猛進,其中便包括了 MOSFET。但其實它的故事得從更早之前講起……。 理論可行,但就是做不出來 1956 年的諾貝爾物理獎由蕭克利 (William Shockley)、巴丁 (John Bardeen) 和布拉頓 (Walter Brattain) 三人共同獲得,以表彰他們在半導體與電晶體的研究與發現。後兩人率先於 1947 年底發明「點接觸式電晶體」,蕭克利緊接著在一個月後,發明更堅固實用的「接面式電晶體」。不過,他們原本研究的都不是這兩種電晶體,而是「場效應電晶體」,卻始終做不出來,不得已才另闢蹊徑。 場效應電晶體是蕭克利在二次大戰期間想出來的。基本上就是將正負極接在矽晶體兩側,然後在上方施加電場,把矽晶體的電子吸引到表面,形成一條電子通道,藉此控制電流的變化,而達到訊號切換與放大的效果(如圖)。 戰爭結束後,蕭克利回到貝爾實驗室,把構想告訴量子物理博士巴丁和實作經驗豐富的布拉頓,他們也都認為這應該行得通,信心滿滿的開始進行實驗。然而他們試盡各種方法卻都沒有用,巴丁苦思許久後,終於在 1946 年想出問題就在於「表面態」(surface state)。 「表面態」障礙 簡單來說,就是矽晶體中,每個矽原子上下左右會被另外 4 個矽原子包圍,彼此共用價電子,就會有 4 個共用電子對,剛好填滿最外殼層所需的 8 個價電子,成為穩定狀態。而他們忽略了最表層的矽原子上方少了可提供價電子的矽原子,因此最外殼層沒有填滿,當電子被電場吸引到表面後,便填補進去,不再是自由電子,所以無法如他們期望的形成電子通道。 雖然知道為什麼,但無論他們怎樣試驗,就是無法打破表面態,最後只好放棄場效應電晶體這個構想。而在此同時,貝爾實驗室的專利律師也才發現,原來早在 1926 年,有位物理學家李連菲爾德 (Julius E. Lilienfeld) 就已經申請場效應電晶體的專利。不過他沒有做出實際成品,也未曾對外發表,這項設計就默默躺在專利局裡,二十幾年無人知曉。 等到 1955 年矽晶圓氧化層意外產生時,巴丁和蕭克利都已離開貝爾實驗室,結果利用此一發現打破表面態,做出場效應電晶體的竟是最令人意想不到的人。 …

【純屬意外的發明與發現】——矽晶圓氧化層

前一篇的《純屬意外的發明與發現——太陽能電池》,介紹由於貝爾實驗室的歐偉在 1940 年的意外發現,才開啟了太陽能電池與電晶體的發明。不過你知道嗎,後來貝爾實驗室又發生了一件意外,電晶體才能有如今的樣貌,也才有IC晶片的誕生。 如前一篇所說,歐偉原本是為了研發可以取代真空管的固態元件,才意外在一塊矽石發現 p-n 接面的光伏效應。因此貝爾實驗室除了有組人馬接續投入太陽能電池的研究,重心還是放在電晶體上。結果布拉頓 (Walter Brattain) 和巴丁 (John Bardeen) 率先於 1947 年底發明「點接觸式電晶體」,一個月後,蕭克利又發明更堅固實用的n-p-n「接面式電晶體」。 當時這兩種電晶體用的都是鍺,而不是矽,因為鍺的能隙比矽的能隙小,比較容易做出成品。不過鍺相對也有容易漏電,不耐高溫的缺點,因此貝爾實驗室仍繼續研究如何製造矽的半導體。 1954 年,富勒 (Calvin Fuller)、闕平 (Daryl Chapin)、皮爾森 (Gerald Pearson) 三人以氣體擴散法,讓含有硼和砷的氣體在高溫下擴散進入矽晶圓表面,成功做出第一個具有實用價值的太陽能電池,這個摻雜技術自然也被用來製造矽的電晶體。 不過太陽能電池只有 n 型矽與 p 型矽兩層,電晶體則有三層,中間那層又必須薄到微米級,所以原來的擴散法不能直接如法炮製。弗若需 (Carl Frosch) 和他的技術助理德瑞克 (Lincoln Derrick) 實驗各種溫度與時間長短,卻始終無法成功,一旦超過 1,100 度,矽晶圓總是坑坑洞洞,甚至整個報銷。 1955 年早春的某一天,弗若需和德瑞克再度進行擴散法實驗時,突然火光一閃,似乎是反應後排放出來的氫氣不知為什麼被點燃,逆火燒向反應室。他們驚魂未定,趕緊關掉設備,想說這次又搞砸了,怎知拿出矽晶圓一看,竟然整片光滑無比,表面還泛著綠光——看來是表面有層薄膜產生的干涉作用。 原來是因為燃燒造成氫氣與反應爐中的氧氣結合產生水蒸氣,水蒸氣與矽晶圓表面的矽反應而生成二氧化矽薄膜。他們進一步實驗發現磷和硼無法穿透二氧化矽,那麼只要在這層二氧化矽上蝕刻出開口,再進行磷或硼的摻雜,便能極為精確地控制矽晶圓的哪個部分要做成 n 型矽或 p 型矽。重複這個步驟,就可以任意做出 n-p-n 型或 p-n-p 型電晶體。 弗若需和德瑞克於 1957 年對外發這個摻雜方式後,矽很快就取代了鍺,而且二氧化矽保護層的其它妙用也隨即浮現,使得電晶體技術突飛猛進;目前佔了所有電晶體數量 99% 以上的「金屬氧化物半導體場效電晶體」(Metal-Oxide-Semiconductor Field-Effect Transistor,簡稱 …

【純屬意外的發明與發現】——太陽能電池

科學史上有很多重大的發明與發現,除了有賴努力不懈的長期耕耘,其實也要有一絲運氣,才能開花結果。例如抗生素盤尼西林,就是因為弗萊明 (Alexander Fleming) 在度假前忘了將葡萄球菌的培養皿收好,青黴菌落到上面,等他回來實驗室後才發現的。除了這個有名的例子,還有許多發現

蒙地霍爾問題的另一解——展望理論

前天介紹有趣的「蒙地霍爾問題」,很多人都以為換或不換的勝率都是 50%,既然沒差,不如不換。但其實換另一扇門的勝率是 2/3,不換的勝率只有 1/3,所以應該要換才對。不過有讀者留言說即使知道答案如此,她還是不換,因為換的代價太大了。我看到這則留言的第一反應是感到不

換?不換?——蒙地霍爾問題

元宵節猜燈謎,若要應景,我想到的是之前在科學史上的今天寫過的「蒙地霍爾問題」。想像你參加美國益智電視節目「做個交易吧」(Let’s Make a Deal),幸運地過關斬將,來到最後一關。在你眼前有三道門,你可以任選一道,門後的東西就是你的。有一道門後是最大獎汽車一部,另外兩

嘲諷下的無奈——我對《千萬別抬頭》的解析

據說《千萬別抬頭》(Don’t Look Up) 評價兩極,有人拍案叫絕,有人大失所望。我猜失望的原因之一或許是這部片眾星雲集,有李奧納多·狄卡皮歐、珍妮佛·勞倫斯、凱特·布蘭琪、梅莉·史翠普、……等實力派的演員,但他們所飾演的角色卻極為浮誇,沒有發揮深刻的演技。其實這部片原

法國大革命與杜邦公司的誕生

法國大革命催生出史上第一個遠距傳訊系統,還間接促成史上第一部計算機的誕生,就連杜邦公司的創立都與法國大革命有關。皮耶.杜邦 (Pierre Samuel du Pont) 是位經濟學家,深受法國國王路易十六倚重,與當時身兼稅務官的「現代化學之父」拉瓦節 (Antoine Lavoisier) 成為知交。由於皮