旋轉硬幣

為什麼不能用量子纏結進行超光速通訊?

為什麼不能用量子纏結進行超光速通訊?

為什麼不能用量子纏結進行超光速通訊?

根據量子理論,兩個纏結的粒子不管相距多遠,當一個粒子的狀態確定的當下,另一個粒子的狀態也就決定了,這「鬼魅般的超距作用」是不受光速限制的。既然如此,那麼我們可以利用量子纏結,以超越光速的速度來傳送訊息嗎?

答案是不行。為什麼?為了避免大家打瞌睡,我且用人物對話的方式來說明。

總統:「博士幹得好,你們用實驗證明愛因斯坦是錯的,現在我們可以用量子纏結進行超光速通訊了吧?」

博士:「總統先生您誤會了,實驗只證明愛因斯坦的隱變數假說是錯的,量子纏結不具定域性,但是並沒有推翻相對論所說的光速極限。」

「什麼,你們不是說就算兩個光子相隔地球和火星這麼遠,地球的光子變怎樣,火星的光子瞬間也會變那樣嗎?這樣的訊息傳送不就超過光速?」

「我先確認一下,您知道粒子必須有交互作用才能產生纏結吧?也就是我們必須在地球上製造一對纏結光子後,再把其中一個光子送到火星,而光子的速度的就是光速……。」

總統打斷他,不耐地說:「這我當然知道。我的意思是先把纏結的光子送到火星,然後好好放著,等到哪天有緊急事件要通知對方再拿來用,這樣從發出通知的當下算起,不就是超光速通訊嗎?」

「長期維持光子的纏結嗎?」博士沉吟了一會兒才說,:「不過問題不在這兒,就算這在技術上做得到,也沒辦法進行超光速的瞬間通訊。」

「為什麼?」

「量子原本處於疊加態,直到我們進行觀測才崩塌為一個確定狀態,問題是我們根本無法決定觀測的結果是 0 或 1,這樣要如何用來傳達訊息?就像你用即時通訊軟體傳訊息,但每次鍵盤按下去,出現的字不見得一樣,對方看到根本不懂你要表達什麼。」

「原來沒辦法隨心所欲控制量子的狀態啊。」總統恍然大悟,但仍不甘心,來回踱了幾步後,突然興奮地說:「我想到了!你看喔,我們就準備 100 對纏結光子,如果觀測第一顆光子的結果不是我們想要的,就測下一顆,直到出現符合的結果,這時就去觀測後半部對應的那顆光子。例如第 3 顆的觀測結果是對的,就去測第 53 顆,這樣火星那邊看到他們的第 53 顆光子的疊加態崩塌了,就知道第 3 顆光子是我們要傳給他們的訊息。怎麼樣,佩服吧?」(註)

博士尷尬地乾笑後,才說:「我剛剛的比喻可能不夠精確,讓您誤會了。我們這邊的光子被觀測的瞬間只是決定了另一顆光子的觀測結果,並沒有讓那顆光子從疊加態自動崩塌為確定狀態。拿硬幣來比喻,一個硬幣停止旋轉後,另一顆硬幣仍然在旋轉,只不過讓它停下來時一定會是同一面。」

「所以我們測了光子,他們並不會知道,要等到觀測後才知道?」

「呃,他們不但觀測前不知道,就算觀測後也不確定我們這邊測了沒。」

「什麼嘛,那你們說要用光子進行量子通訊難道是在唬我嗎?」

「不,總統先生,我們絕對沒有騙您,量子纏結是可以用來進行量子通訊,但主要是為了加密,而不是超越光速。」

「現在的加密方式不好嗎?為什麼還需要量子加密?」總統沒好氣地說。

「加密就是將明文(原來的訊息)用演算法轉換為密文(轉換後看似無意義的訊息),而演算法用很大的天文數字做為『密鑰』,得對這密鑰做質因數分解,才能將密文還原為明文。因為質因數分解很耗時間,目前的電腦得花很久的時間才能破解密鑰,但以後量子電腦很快就能完成質因數分解,所以必須利用量子纏結產生密鑰,才能確保通訊安全。」

「等等,那這密鑰不就是瞬間產生,超越光速了?」總統又眼睛一亮。

博士苦笑說:「呃,沒那麼簡單,對纏結的光子進行觀測後,雙方必須再告訴對方自己的觀測結果,才能產生金鑰,所以還是無法超越光速。」

「哼,搞半天還是要用傳統通訊方式!而且萬一敵人竊聽到所說的觀測結果,不就知道金鑰是什麼,還是不安全啊!」

「不不,保證絕對安全。就算敵人竊聽到觀測結果,也搞不清密鑰是什麼樣子,而且會被我們發現有人竊聽。」

「真的這麼神奇?」原本意興闌珊的總統又提起興致,但對博士所說已持保留態度,於是命令他:「你給我好好解釋實際上要怎麼做,不然我不會批准經費的。」

「是是是,不過現在時間已晚,請讓我準備準備,下次再向您解說。」

總統點點頭離開後,博士心想下次可能得用圖解才能讓總統明瞭量子加密了。

註:本篇先貼於我的臉書紛絲頁,讀者楊政憲在留言處提出這個點子,經他同意後,我把它放入文章裡。

Share on facebook
Share on twitter

更多文章

© 2021 張瑞棋